Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Adv Healthc Mater ; : e2304488, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588047

RESUMO

Transcatheter arterial chemoembolization (TACE) has proven effective in blocking tumor-supplied arteries and delivering localized chemotherapeutic treatment to combat tumors. However, traditional embolic TACE agents exhibit certain limitations, including insufficient chemotherapeutic drug-loading and sustained-release capabilities, non-biodegradability, susceptibility to aggregation, and unstable mechanical properties. This study introduces a novel approach to address these shortcomings by utilizing a complex coacervate as a liquid embolic agent for tumor chemoembolization. By mixing oppositely charged quaternized chitosan (QCS) and gum arabic (GA), a QCS/GA polymer complex coacervate with shear-thinning property is obtained. Furthermore, the incorporation of the contrast agent Iohexol (I) and the chemotherapeutic doxorubicin (DOX) into the coacervate leads to the development of an X-ray-opaque QCS/GA/I/DOX coacervate embolic agent capable of carrying drugs. This innovative formulation effectively embolizes the renal arteries without recanalization. More importantly, the QCS/GA/I/DOX coacervate can successfully embolize the supplying arteries of the VX2 tumors in rabbit ear and liver. Coacervates can locally release DOX to enhance its therapeutic effects, resulting in excellent antitumor efficacy. This coacervate embolic agent exhibits substantial potential for tumor chemoembolization due to its shear-thinning performance, excellent drug-loading and sustained-release capabilities, good biocompatibility, thrombogenicity, biodegradability, safe and effective embolic performance, and user-friendly application.

2.
Medicine (Baltimore) ; 103(16): e37834, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640338

RESUMO

BACKGROUND: Evidence from clinical research suggests that the tumor-associated macrophages (TAMs) were associated with prognosis in hepatocellular carcinoma (HCC). The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of CD68 + TAMs in HCC. METHODS: This study conducted a systematic search in Pubmed, Embase, the Cochrane Library and China National Knowledge Internet from inception of the databases to November 2023. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. The Newcastle-Ottawa Scale was used to evaluate the risk of prejudice. RESULTS: We analyzed 4362 HCC patients. The present research indicated that the expression levels Of CD68 + TAMs were significantly associated with overall survival (OS) (HR = 1.55, 95% CI: 1.30-1.84) and disease-free survival (DFS) (HR = 1.44, 95% CI: 1.17-1.78). Subgroup analysis based on cutoff values showed that the "Median" subgroup showed a pooled HR of 1.66 with a 95% CI ranging from 1.32 to 2.08, which was slightly higher than the "Others" subgroup that exhibited a pooled HR of 1.40 and a 95% CI of 1.07 to 1.84. The "PT" subgroup had the highest pooled HR of 1.68 (95% CI: 1.19-2.37), indicating a worse OS compared to the "IT" (pooled HR: 1.50, 95% CI: 1.13-2.01) and "Mix" (pooled HR: 1.52, 95% CI: 1.03-2.26) subgroups. Moreover, in the sample size-based analysis, studies with more than 100 samples (>100) exhibited a higher pooled HR of 1.57 (95% CI: 1.28 to 1.93) compared to studies with fewer than 100 samples (<100), which had a pooled HR of 1.45 (95% CI: 1.00-2.10). CONCLUSIONS: The analysis suggests that CD68 + TAMs were significantly associated with unfavorable OS and DFS in HCC patients, and may be served as a promising prognostic biomarker in HCC. However, more large-scale trials are needed to study the clinical value of TAMs in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Macrófagos Associados a Tumor/patologia , Intervalo Livre de Doença
3.
Mol Genet Genomic Med ; 12(3): e2409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511267

RESUMO

BACKGROUND: Congenital myasthenic syndrome is a heterogeneous group of inherited neuromuscular transmission disorders. Variants in RAPSN are a common cause of CMS, accounting for approximately 14%-27% of all CMS cases. Whether preimplantation genetic testing for monogenic disease (PGT-M) could be used to prevent the potential birth of CMS-affected children is unclear. METHODS: Application of WES (whole-exome sequencing) for carrier testing and guidance for the PGT-M in the absence of a genetically characterized index patient as well as assisted reproductive technology were employed to prevent the occurrence of birth defects in subsequent pregnancy. The clinical phenotypes of stillborn fetuses were also assessed. RESULTS: The family carried two likely pathogenic variants in RAPSN(NM_005055.5): c.133G>A (p.V45M) and c.280G>A (p.E94K). And the potential birth of CMS-affected child was successfully prevented, allowing the family to have offspring devoid of disease-associated variants and exhibiting a normal phenotype. CONCLUSION: This report constitutes the first documented case of achieving a CMS-free offspring through PGT-M in a CMS-affected family. By broadening the known variant spectrum of RAPSN in the Chinese population, our findings underscore the feasibility and effectiveness of PGT-M for preventing CMS, offering valuable insights for similarly affected families.


Assuntos
Síndromes Miastênicas Congênitas , Criança , Feminino , Gravidez , Humanos , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Testes Genéticos , Fenótipo
4.
Opt Lett ; 49(6): 1421-1424, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489415

RESUMO

In recent years, utilizing nitrogen-vacancy color centers in diamond for temperature sensing has drawn great attention. However, increasing the sensitivity has encountered challenges due to the intrinsic temperature-dependent energy level shift, i.e., temperature responsivity, being limited to -74 kHz/K. In this Letter, we take advantage of the magnetic field to regulate the energy level to enhance temperature sensitivity. The sensor is formed by adhering a micron-sized diamond on the end face of an optical fiber, and a small magnet is mounted at a certain distance with the diamond exploiting a cured polydimethylsiloxane block as the bridge. The temperature change leads to the variation of the distance between the diamond and the magnet, thus affecting the magnetic strength felt by the diamond. This finally contributes an additional temperature-induced energy level shift, giving rise to an enhanced sensitivity. Experimental results demonstrated the proposed scheme and achieved a 4.2-fold improvement in the temperature responsivity and a 2.1-fold enhancement in sensitivity. Moreover, the diamond and the fiber-optic integrated structure improve the portability of the sensor.

5.
Metab Eng ; 82: 225-237, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369050

RESUMO

Cis, cis-muconic acid (MA) is widely used as a key starting material in the synthesis of diverse polymers. The growing demand in these industries has led to an increased need for MA. Here, we constructed recombinant Corynebacterium glutamicum by systems metabolic engineering, which exhibit high efficiency in the production of MA. Firstly, the three major degradation pathways were disrupted in the MA production process. Subsequently, metabolic optimization strategies were predicted by computational design and the shikimate pathway was reconstructed, significantly enhancing its metabolic flux. Finally, through optimization and integration of key genes involved in MA production, the recombinant strain produced 88.2 g/L of MA with the yield of 0.30 mol/mol glucose in the 5 L bioreactor. This titer represents the highest reported titer achieved using glucose as the carbon source in current studies, and the yield is the highest reported for MA production from glucose in Corynebacterium glutamicum. Furthermore, to enable the utilization of more cost-effective glucose derived from corn straw hydrolysate, we subjected the strain to adaptive laboratory evolution in corn straw hydrolysate. Ultimately, we successfully achieved MA production in a high solid loading of corn straw hydrolysate (with the glucose concentration of 83.56 g/L), resulting in a titer of 19.9 g/L for MA, which is 4.1 times higher than that of the original strain. Additionally, the glucose yield was improved to 0.33 mol/mol. These provide possibilities for a greener and more sustainable production of MA.


Assuntos
Corynebacterium glutamicum , Ácido Sórbico/análogos & derivados , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Reatores Biológicos/microbiologia , Glucose/genética , Glucose/metabolismo , Ácido Sórbico/metabolismo , Engenharia Metabólica/métodos , Fermentação
6.
Sci China Life Sci ; 67(4): 720-732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172357

RESUMO

The gingiva is a key oral barrier that protects oral tissues from various stimuli. A loss of gingival tissue homeostasis causes periodontitis, one of the most prevalent inflammatory diseases in humans. The human gingiva exists as a complex cell network comprising specialized structures. To understand the tissue-specific pathophysiology of the gingiva, we applied a recently developed spatial enhanced resolution omics-sequencing (Stereo-seq) technique to obtain a spatial transcriptome (ST) atlas of the gingiva in healthy individuals and periodontitis patients. By utilizing Stereo-seq, we identified the major cell types present in the gingiva, which included epithelial cells, fibroblasts, endothelial cells, and immune cells, as well as subgroups of epithelial cells and immune cells. We further observed that inflammation-related signalling pathways, such as the JAK-STAT and NF-κB signalling pathways, were significantly upregulated in the endothelial cells of the gingiva of periodontitis patients compared with those of healthy individuals. Additionally, we characterized the spatial distribution of periodontitis risk genes in the gingiva and found that the expression of IFI16 was significantly increased in endothelial cells of inflamed gingiva. In conclusion, our Stereo-seq findings may facilitate the development of innovative therapeutic strategies for periodontitis by mapping periodontitis-relevant genes and pathways and effector cells.


Assuntos
Gengiva , Periodontite , Humanos , Gengiva/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Periodontite/genética , Periodontite/metabolismo , Perfilação da Expressão Gênica
7.
Biotechnol Adv ; 72: 108319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38280495

RESUMO

The construction of high-performance microbial cell factories (MCFs) is the centerpiece of biomanufacturing. However, the complex metabolic regulatory network of microorganisms poses great challenges for the efficient design and construction of MCFs. The genome-scale metabolic network models (GSMs) can systematically simulate the metabolic regulation process of microorganisms in silico, providing effective guidance for the rapid design and construction of MCFs. In this review, we summarized the development status of 16 important industrial microbial GSMs, and further outline the technologies or methods that continuously promote high-quality GSMs construction from five aspects: I) Databases and modeling tools facilitate GSMs reconstruction; II) evolving gap-filling technologies; III) constraint-based model reconstruction; IV) advances in algorithms; and V) developed visualization tools. In addition, we also summarized the applications of GSMs in guiding metabolic engineering from four aspects: I) exploring and explaining metabolic features; II) predicting the effects of genetic perturbations on metabolism; III) predicting the optimal phenotype; IV) guiding cell factories construction in practical experiment. Finally, we discussed the development of GSMs, aiming to provide a reference for efficiently reconstructing GSMs and guiding metabolic engineering.


Assuntos
Dissacarídeos , Glucuronatos , Engenharia Metabólica , Redes e Vias Metabólicas , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Fenótipo
8.
Mol Biol Rep ; 51(1): 54, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165547

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) is featured by rapid progression and dismal outcomes clinically. Chaperonin Containing TCP1 Subunit 2 (CCT2) was identified as a crucial regulator for tumor progression, however, its exact role in EOC remained largely unknown. METHODS: CCT2 expression and prognostic value in EOC samples were assessed according to TCGA dataset. Proliferation and mobility potentials were assessed by CCK8, colony-formation, wound healing, and Transwell assays. Cancer stem cell (CSC) traits were evaluated by RT-PCR, WB assays, sphere-forming assay and chemoresistance analysis. Bioinformatic analysis, co-IP assays and ubiquitin assays were performed to explore the mechanisms of CCT2 on EOC cells. RESULTS: CCT2 highly expressed in EOC tissues and predicted poor prognosis of EOC patients by TCGA analysis. Silencing CCT2 significantly restrained cell proliferation, migration, and invasion. Moreover, CCT2 could effectively trigger epithelial-mesenchymal transition to confer extensive invasion potentials to EOC cells, Importantly, CCT2 positively correlated with CSC markers in EOC, and CCT2 knockdown impaired CSC traits and sensitize EOC cells to conventional chemotherapy regimens. Contrarily, overexpressing CCT2 achieved opposite results. Mechanistically, CCT2 exerted its pro-oncogene function by triggering Wnt/ß-catenin signaling. Specifically, CCT2 could recruit HSP105-PP2A complex, a well-established dephosphorylation complex, to ß-catenin via direct physical interaction to prevent phosphorylation-induced proteasomal degradation of ß-catenin, resulting in intracellular accumulation of active ß-catenin and increased signaling activity. CONCLUSIONS: CCT2 was a novel promotor for EOC progression and a crucial sustainer for CSC traits mainly by preventing ß-catenin degradation. Targeting CCT2 may represent a promising therapeutic strategy for EOC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Movimento Celular , Chaperonina com TCP-1/metabolismo
9.
Innovation (Camb) ; 5(1): 100547, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38170012

RESUMO

Cognitive decline has been linked to periodontitis through an undetermined pathophysiological mechanism. This study aimed to explore the mechanism underlying periodontitis-related cognitive decline and identify therapeutic strategies for this condition. Using single-nucleus RNA sequencing we found that changes in astrocyte number, gene expression, and cell‒cell communication were associated with cognitive decline in mice with periodontitis. In addition, activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was observed to decrease the phagocytic capability of macrophages and reprogram macrophages to a more proinflammatory state in the gingiva, thus aggravating periodontitis. To further investigate this finding, lipid-based nanoparticles carrying NLRP3 siRNA (NPsiNLRP3) were used to inhibit overactivation of the NLRP3 inflammasome in gingival macrophages, restoring the oral microbiome and reducing periodontal inflammation. Furthermore, gingival injection of NPsiNLRP3 reduced the number of Serpina3nhigh astrocytes in the hippocampus and prevented cognitive decline. This study provides a functional basis for the mechanism by which the destruction of periodontal tissues can worsen cognitive decline and identifies nanoparticle-mediated restoration of gingival macrophage function as a novel treatment for periodontitis-related cognitive decline.

10.
Bioact Mater ; 34: 181-203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235308

RESUMO

Supramolecular peptide nanofiber hydrogels are emerging biomaterials for tissue engineering, but it is difficult to fabricate multi-functional systems by simply mixing several short-motif-modified supramolecular peptides because relatively abundant motifs generally hinder nanofiber cross-linking or the formation of long nanofiber. Coupling bioactive factors to the assembling backbone is an ideal strategy to design multi-functional supramolecular peptides in spite of challenging synthesis and purification. Herein, a multi-functional supramolecular peptide, P1R16, is developed by coupling a bioactive factor, parathyroid hormone related peptide 1 (PTHrP-1), to the basic supramolecular peptide RADA16-Ⅰ via solid-phase synthesis. It is found that P1R16 self-assembles into long nanofibers and co-assembles with RADA16-Ⅰ to form nanofiber hydrogels, thus coupling PTHrP-1 to hydrogel matrix. P1R16 nanofiber retains osteoinductive activity in a dose-dependent manner, and P1R16/RADA16-Ⅰ nanofiber hydrogels promote osteogenesis, angiogenesis and osteoclastogenesis in vitro and induce multi-functionalized osteoregeneration by intramembranous ossification and bone remodeling in vivo when loaded to collagen (Col) scaffolds. Abundant red blood marrow formation, ideal osteointegration and adapted degradation are observed in the 50% P1R16/Col scaffold group. Therefore, this study provides a promising strategy to develop multi-functional supramolecular peptides and a new method to topically administrate parathyroid hormone or parathyroid hormone related peptides for non-healing bone defects.

11.
Cell Mol Biol Lett ; 29(1): 17, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243188

RESUMO

Despite notable advancements in the investigation and management of lung adenocarcinoma (LUAD), the mortality rate for individuals afflicted with LUAD remains elevated, and attaining an accurate prognosis is challenging. LUAD exhibits intricate genetic and environmental components, and it is plausible that free fatty acid receptors (FFARs) may bridge the genetic and dietary aspects. The objective of this study is to ascertain whether a correlation exists between FFAR4, which functions as the primary receptor for dietary fatty acids, and various characteristics of LUAD, while also delving into the potential underlying mechanism. The findings of this study indicate a decrease in FFAR4 expression in LUAD, with a positive correlation (P < 0.01) between FFAR4 levels and overall patient survival (OS). Receiver operating characteristic (ROC) curve analysis demonstrated a significant diagnostic value [area under the curve (AUC) of 0.933] associated with FFAR4 expression. Functional investigations revealed that the FFAR4-specific agonist (TUG891) effectively suppressed cell proliferation and induced cell cycle arrest. Furthermore, FFAR4 activation resulted in significant metabolic shifts, including a decrease in oxygen consumption rate (OCR) and an increase in extracellular acidification rate (ECAR) in A549 cells. In detail, the activation of FFAR4 has been observed to impact the assembly process of the mitochondrial respiratory chain complex and the malate-aspartate shuttle process, resulting in a decrease in the transition of NAD+ to NADH and the inhibition of LUAD. These discoveries reveal a previously unrecognized function of FFAR4 in the negative regulation of mitochondrial metabolism and the inhibition of LUAD, indicating its potential as a promising therapeutic target for the treatment and diagnosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Proliferação de Células/genética , Transporte de Elétrons , Neoplasias Pulmonares/patologia
12.
IEEE Trans Neural Netw Learn Syst ; 35(3): 3229-3241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37195852

RESUMO

The precise control of the spatiotemporal process in a roller kiln is crucial in the production of Ni-Co-Mn layered cathode material of lithium-ion batteries. Since the product is extremely sensitive to temperature distribution, temperature field control is of great significance. In this article, an event-triggered optimal control (ETOC) method with input constraints for the temperature field is proposed, which takes up an important position in reducing the communication and computation costs. A nonquadratic cost function is adopted to describe the system performance with input constraints. First, we present the problem description of the temperature field event-triggered control, where this field is described by a partial differential equation (PDE). Then, the event-triggered condition is designed according to the information of system states and control inputs. On this basis, a framework of the event-triggered adaptive dynamic programming (ETADP) method that is based on the model reduction technology is proposed for the PDE system. A critic network is used to approach the optimal performance index by a neural network (NN) together with that an actor network is used to optimize the control strategy. Furthermore, an upper bound of the performance index and a lower bound of interexecution times, as well as the stabilities of the impulsive dynamic system and the closed-loop PDE system, are also proved. Simulation verification demonstrates the effectiveness of the proposed method.

14.
Medicine (Baltimore) ; 102(46): e36171, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986304

RESUMO

RATIONALE: Pseudovaginal perineoscrotal hypospadias (PPSH) is a rare autosomal recessive disorder of sex development caused by biallelic mutations in SRD5A2. PPSH is characterized by a vaginal-like blind ending perineal opening, penoscrotal hypospadias, and impaired masculinization. PATIENT CONCERNS: We reported preimplantation genetic testing and prenatal diagnosis in a family with PPSH. DIAGNOSIS: Whole-exome sequencing of the family identified 2 SRD5A2 pathogenic variants (c.578A>G and c.607G>A). Haplotype analysis showed that the variants were inherited from the previous generation of this family. INTERVENTIONS: During subsequent in vitro fertilization, preimplantation genetic testing was performed on 9 embryos. One unaffected embryo was transferred, resulting in a singleton pregnancy. OUTCOMES: The prenatal diagnosis at 20 weeks' gestation confirmed the fetus was unaffected. A healthy female infant weighing 3100 g and measuring 50 cm was delivered vaginally at 39+5 weeks of gestation. LESSONS SUBSECTIONS: This case highlights the use of preimplantation genetic testing and prenatal diagnosis to prevent the transmission of PPSH in families at risk. Our approach provides an effective strategy for identification and management of families with autosomal recessive disorders like PPSH.


Assuntos
Transtornos do Desenvolvimento Sexual , Hipospadia , Diagnóstico Pré-Implantação , Masculino , Lactente , Gravidez , Humanos , Feminino , Hipospadia/diagnóstico , Hipospadia/genética , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Testes Genéticos , Diagnóstico Pré-Natal , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase
15.
Heliyon ; 9(10): e20965, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867842

RESUMO

Self-collection of saliva samples has attracted considerable attention in recent years, particularly during the coronavirus disease 2019 pandemic. However, studies investigating the detection of other common respiratory pathogens in saliva samples are limited. In this study, nasopharyngeal swabs (NPS), oropharyngeal swabs (OPS), and "hock-a-loogie" saliva (HLS) were collected from 469 patients to detect 13 common respiratory pathogens. Overall positivity rates for NPS (66.1 %), HLS (63.5 %), and OPS (57.8 %) were statistically different (P = 0.028), with an overall concordance of 72.7 %. Additionally, detection rates for NPS (85.9 %) and HLS (83.2 %) for all pathogens were much higher than for OPS (73.3 %). Coronavirus and human rhinovirus were most frequently detected pathogens in NPS (P < 0.001). Mycoplasma pneumoniae was significantly more prevalent in the HLS group (P = 0.008). In conclusion, NPS was a reliable sample type for detecting common respiratory pathogens. HLS was more easily collected and can be used in emergencies or specific conditions. Mixed NPS/OPS and NPS/HLS specimens have the potential to improve detection rates, although OPS testing alone has a relatively high risk for missed detection.

16.
Angew Chem Int Ed Engl ; 62(47): e202310989, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37783669

RESUMO

Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.

17.
Front Oncol ; 13: 1046951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681026

RESUMO

Purpose: To develop and validate a three-dimensional ultrasound (3D US) radiomics nomogram for the preoperative prediction of extrathyroidal extension (ETE) in papillary thyroid cancer (PTC). Methods: This retrospective study included 168 patients with surgically proven PTC (non-ETE, n = 90; ETE, n = 78) who were divided into training (n = 117) and validation (n = 51) cohorts by a random stratified sampling strategy. The regions of interest (ROIs) were obtained manually from 3D US images. A larger number of radiomic features were automatically extracted. Finally, a nomogram was built, incorporating the radiomics scores and selected clinical predictors. Receiver operating characteristic (ROC) curves were performed to validate the capability of the nomogram on both the training and validation sets. The nomogram models were compared with conventional US models. The DeLong test was adopted to compare different ROC curves. Results: The area under the receiver operating characteristic curve (AUC) of the radiologist was 0.67 [95% confidence interval (CI), 0.580-0.757] in the training cohort and 0.62 (95% CI, 0.467-0.746) in the validation cohort. Sixteen features from 3D US images were used to build the radiomics signature. The radiomics nomogram, which incorporated the radiomics signature, tumor location, and tumor size showed good calibration and discrimination in the training cohort (AUC, 0.810; 95% CI, 0.727-0.876) and the validation cohort (AUC, 0.798; 95% CI, 0.662-0.897). The result suggested that the diagnostic efficiency of the 3D US-based radiomics nomogram was better than that of the radiologist and it had a favorable discriminate performance with a higher AUC (DeLong test: p < 0.05). Conclusions: The 3D US-based radiomics signature nomogram, a noninvasive preoperative prediction method that incorporates tumor location and tumor size, presented more advantages over radiologist-reported ETE statuses for PTC.

18.
Sci Total Environ ; 896: 165254, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37394075

RESUMO

The ecological effects of quinolone antibiotics (QNs) on non-target organisms have received widespread attention. The toxicological mechanisms of three common QNs, that is, enrofloxacin, levofloxacin, and ciprofloxacin, on soybean seedlings were investigated in this study. Enrofloxacin and levofloxacin caused significant growth inhibition, ultrastructural alterations, photosynthetic suppression, and stimulation of the antioxidant system, with levofloxacin exhibiting the strongest toxic effects. Ciprofloxacin (<1 mg·L-1) did not have a significant effect on the soybean seedlings. As the concentrations of enrofloxacin and levofloxacin increased, antioxidant enzyme activities, malondialdehyde content, and hydrogen peroxide levels also increased. Meanwhile, the chlorophyll content and chlorophyll fluorescence parameters decreased, indicating that the plants underwent oxidative stress and photosynthesis was suppressed. The cellular ultrastructure was also disrupted, which was manifested by swollen chloroplasts, increased starch granules, disintegration of plastoglobules, and mitochondrial degradation. The molecular docking results suggested that the QNs have an affinity for soybean target protein receptors (4TOP, 2IUJ, and 1FHF), with levofloxacin having the highest binding energy (-4.97, -3.08, -3.8, respectively). Transcriptomic analysis has shown that genes were upregulated under the enrofloxacin and levofloxacin treatments were mainly involved in ribosome metabolism and processes to synthesize oxidative stress-related proteins. Downregulated genes in the levofloxacin treatment were primarily enriched in photosynthesis-related pathways, indicating that levofloxacin significantly inhibited gene expression for photosynthesis. Genes expression level by quantitative real-time PCR analysis was consistent with the transcriptomic results. This study confirmed the toxic effect of QNs on soybean seedlings, and provided new insights into the environmental risks of antibiotics.


Assuntos
Antioxidantes , Plântula , Antioxidantes/metabolismo , Enrofloxacina , Simulação de Acoplamento Molecular , Levofloxacino , Transcriptoma , Antibacterianos/farmacologia , Fotossíntese , Clorofila/metabolismo , Ciprofloxacina/metabolismo
19.
Adv Sci (Weinh) ; 10(25): e2300593, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37395637

RESUMO

The dispersibility of fillers determines their effect on the mechanical properties and anisotropy of the 3D-printed polymeric composites. Nanoscale fillers have the tendency to aggregate, resulting in the deterioration of part performance. An in situ filler addition method using the newly developed dual-functional toughness agents (TAs) is proposed in this work for the homogeneous dispersion of carbon nanotubes (CNTs) in elastomer composites printed via multi jet fusion. The CNTs added in the TAs serve as an infrared absorbing colorant for selective powder fusion, as well as the strengthening and toughening fillers. The printability of the TA is theoretically deduced based on the measured physical properties, which are subsequently verified experimentally. The printing parameters and agent formulation are optimized to maximize the mechanical performance of the printed parts. The printed elastomer parts show significant improvement in strength and toughness for all printing orientations and alleviation of the mechanical anisotropy originating from the layer-wise fabrication manner. This in situ filler addition method using tailorable TAs is applicable for fabricating parts with site-specific mechanical properties and is promising in assisting the scalable manufacturing of 3D-printed elastomers.

20.
Adv Sci (Weinh) ; 10(21): e2301567, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37162222

RESUMO

Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, this work leverages the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of 3D re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J kg-1 and 5900 Nm kg-1 , respectively, together with an excellent recovery ratio of ≈80%, thereby overcoming the strength-recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range of materials proposed for wearable applications, attributed to the synergetic strengthening of the energy-absorbing re-entrant unit cells and their unique topological interlocking. This work advocates the combined design of energy-absorbing unit cells and their interlocking to extend the application prospects of fabric-based materials to shape-adaptive protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA